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Perturbed-TEM Analysis of
Transmission Lines with
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Abstract —A novel perturbed-TEM approach is proposed to study the
detailed current distribution and the propagation constant of a multi-
conductor transmission line system with imperfect conductors. In this
study, the perturbed fields are derived under the assumption that the
fields outside the conductors are TEM waves of the corresponding
lossless sysfem and those inside the conductors satisfy the TM modal
equations. These fields are then substituted into a perturbational for-
mula to obtain the propagation constant of the lossy system. Presented
as an example are the current distribution and the propagation constant
of a lossy two-wire transmission line, which clearly illustrates the loss
mechanism due to the skin effect and the proximity effect.

I. INTRODUCTION

HE MODELING of conductor loss in a multicon-

ductor transmission line system is again receiving
attention due to the advent of high-speed integrated
circuits. As the speed goes higher and the circuit size gets
smaller, the circuit dimension becomes comparable to the
skin depth. Under such a condition, the skin effect and
the proximity cffect may force the currents to gather
toward the surfaces and near sides of the conductors.
This modification of the current distribution makes the
power loss, and therefore the attenuation constant, fre-
quency dependent.

Although studies of conductor loss started very early,
most of them have treated only cases with circuit dimen-
sions much greater than the skin depth [1]-[5]. The power
loss was then obtained by the surface resistance method
[1]-[4] once the current distribution of the related lossless
system could be calculated in advance, or by the incre-
mental induction rule [5] if the inductance of the lossless
system could be found analytically. The common assump-
tion in these methods is the exponentially decaying behav-
ior of the current distributions.

It is not until recently that detailed current distribu-
tions have been given serious attention. Waldow and
Wolff [6] used a variational formulation for studying the
skin effect problem. For the same skin effect problem,
Konrad [7], [8] and Costache [9] developed an integrodif-
ferential finite element approach. To carry out the nu-
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merical computation, both methods [6]-[9] have to as-
sume an artificial boundary box to confine the problem in
a finite region. Alternatively, Weeks et al. [10] have pro-
posed a volume integral equation method based on net-
work theory. In the high-frequency range, all the above
methods are faced with a large matrix problem, which
may require a great deal of time in numerical calculation.
Djordjevic et al. [11] applied the surface integral equation
approach, which was numerically efficient for most of the
frequencies. However, an additional unnecessary radia-
tion resistance would appear at higher frequency due to
the axial-independent TM wave assumption. Recently,
Wu and Yang [12] successfully proposed a similar surface
integral equation approach to tackle the skin effect prob-
lem where an axial and sinusoidal quasi-TEM modal field
was assumed.

In this paper, a perturbational formulation of the prop-
agation constant [13] is proposed to study the skin effect
and proximity effect of a multiconductor transmission line
system. By assuming that the fields outside the conductors
are TEM waves of the corresponding lossless system and
that those inside satisfy the modified equations of TM
modal fields, suitable perturbed TEM ficlds may be de-
rived for calculating the propagation constant from the
perturbational formula. The numerical results of a lossy
two-wire transmission line are presented as a demonstra-
tion of this approach, and they illustrate clearly the skin
effect and the proximity effect.

II. PERTURBATIONAL FORMULATION OF THE
PROPAGATION CONSTANT

Consider a lossy transmission line system (the per-
turbed system) of N imperfect electric conductors,
Q. e,,0:i=1,2,---,N), in a lossless region Q(i,, €,)
as shown in Fig. 1. Each conductor has conductivity o,,
permeability u,, and permittivity €, respectively. By per-
turbational technique, one needs the related lossless sys-
tem (the unperturbed system) in which the conductors in
Fig. 1 are replaced by perfect electric conductors of the
same shapes. Conventionally, the attenuation constant «
of the lossy system is calculated by the power-loss for-
mula [1]

Py
o= —

=3p (1)
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Fig. 1. Geometry of lossy multiconductor transmission line system.

where P, is the power loss per unit length and P is the
power flow along the line. In this study, the perturba-
tional formula [13]

N
Y $c(A; X E)-Hydl'
i=1

" ij(EXHO—EOXH)~2dxdy

(2)

YTV

will be adopted to characterize the propagation constant
v of the lossy system. Here (E, H) are the fields of the
lossy system (Fig. 1) propagating in the negative z direc-
tion with y = a + jB. (E,, H,) are the fields of the related
lossless system propagating in the positive z direction
with the propagation constant y, = jB,. Also, A; repre-
sents the unit normal vector pointing outward from the
surface contour C; of each conductor, and (2 is the region
outside the conductors. Note that formula (2) includes the
change of the wavenumber B8 — B, while formula (1) does
not.

It should be mentioned that both formulas (1) and (2)
are exact if exact fields for (E, H) are substituted into
these formulas. Using the perturbational formulation, a
suitable approximation is used for the (E, H) fields in-
stead of the exact ones. For instance, the unperturbed
fields (E,, H,) may be utilized to compute the powers P,
and P in formula (1). Alternative approximate fields are
obtained based on the assumptions that the fields of the
lossy system outside the conductors would be almost the
same as those of the lossless system, and that the electric
currents inside the conductors would exhibit an exponen-
tially decaying behavior. Under such assumptions, both
(1) and (2) would predict the same result:

N
Z Rsi95c,.|Ho|2 dl
i=1

2foRe[E0XH0*]~£dxdy

(3)

a=Re[y—y,]=

“where R, =(mfu,/0)'/? is the surface resistance and f
is the operating frequency.

Very often the exponentially decaying assumption is
not satisfied, especially when the skin depth is no longer

755

much smaller than the dimensions of the conductors.
Then one may use the approximate fields derived from
the quasi-TEM modal analysis [12], The main assump-
tions of this analysis are that the fields outside the con-
ductors are TEM waves in nature and the fields inside the
conductors are TM fields with E = ZE_.. Under such as-
sumptions, the approximate fields (with the factor
exp[j(wr + B,yz)] omitted) may be expressed as

{H=Vt¢ XZ/1;

a2 : for (x,y)in Q;, (4a)
E=2V"¢ /w0

H=V,pXZ%/u,
E=V¢ /o€
where the potential function ¢ satisfies

(Vtz_jw:u'i(ri)@(x’.y) =-0oV for (x,y) in Q; (Sa)
Vie(x,y) =0 for (x,y) in Q. (5b)

Here V, = £3 /3x + $3 /3y, V> =08% /3x* + 8 /9y?, and V,
(a constant inside each conductor) is the voltage drop per
unit length. Equation (5) together with the conditions that
¢ and the tangential magnetic field are continuous across
the conductor boundaries can be used to solve the per-
turbed EM fields. , :

The approximate fields (4) and (5) were used in [12] to
obtain the equivalent circuit parameters of the line such
as resistance R and inductance L. In this study, their
modifications, (6), will be substituted into formula (2) to
obtain the propagation constant of the same line. Note
that outside the conductors H 1is approximately equal to
— Hg* and (E, H) depend only on the derivatives of ¢. So
one may add any constant to ¢ without changing the field
distribution. By this argument, one has the modified
equations :

(V2 = jouo)p(x,y) =0

for (x,y) in Q

(4b)

. for (x,y)in Q, (6a)
A (w7 Vo — Hi X 2)=0  for (x,y) on C; (6b)
for the perturbed EM fields (E, H) employed in (2).

III. Two-Wiri TRANSMISSION LINE WITH

ImperFECT CONDUCTORS

To demonstrate the application of the perturbational
formula (2), let us consider the lossy two-wire transmis-

sion line system (Fig. 2) which consists of two round wires

(g, €, 0) of radii a, and a, with a distance D between
the wire centers. Its unperturbed fields may be expressed
as

Hy=u;'Vpg X 2 (7a)
Ey=-V,9, /VV«OEO (7b)

where the scalar potential ¢, for the lossless system is

(x-D, -4y |7 (8)
_(x—D1+b)2+y2 .

@ =polpIn

Here D,=(D?+a?—a3)/2D, b=(D? -
is the total current along the wire.

a?)'/?, and I,
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Fig. 2. Geometry of lossy two-wire transmission line system.

The next step is to find the perturbed fields (E, H), (4),
inside the conductors. By using (6) and adopting polar
coordinates (p, 6), the potential inside the left conductor
can be written as

o= 2. @nlu(kp)cosmd (9a)
m=0

= Iypg —\"
=0 _(e,—yfe?—1 9b
#m wkae,, ! (ka,) (el \/el ) (%)
Here k?= — jop,a, J, (kp) is Bessel’s function of order

m with complex argument kp; e;=D, /a;; and €,=2
(m=0)or 1 (m=1). A similar expression for the poten-
tial inside the right conductor can also be derived. By
using the perturbed and unperturbed fields, (9) and (8),
the propagation constant in (2) then reduces to

Jjw
ck(cosh™le, +cosh e, )

2 et ]m(kﬁll) ——\2m
X — e, —y/e2~
lgl mgo ateer;a(kai) <el \/61 ! ) (10)

where e,= D, /a,, D,=D— D,, and c is the speed of
light in free space. The current density J,( = ¢E, = jooe)
in the left conductor can be written as

Y™ Y™

Lo, (kp)cos mO( N )m
Wkalfmj’;i(kal) ! ! ’

(11)

The expressions for large or small |ka,| are worth spe-
cial consideration. When |ka,| are much greater than
unity, which is equivalent to the case where a, are greater
than the skin depth, J/(ka;) are approximately equal to
i, {ka,) so the infinite series of (10) can be analytically

calculated:
(1+j)\/w60/20' i e,

YY" 2(cosh~'e; +cosh~'e,) /= ai\/el?_l

,=—joo )

m=20

J

. (12)
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This same result for a, =a, has been presented in [1].
Equation (12) also shows that the attenuation constant «
is proportional to the square root of the frequency. This is
the well-known result at higher frequency. In the lower
frequency range where |ka,| are much less than unity so
that Jy(ka,) =1, J(ka,) = ka, /2, and J, (ka;)= 0 for m >
2, equation (10) can be simplified to
art+as?

+0(w). (13)

Yo cpugo (cosh~le; +cosh™'e,)
Thus the attenuation constant approaches a certain con-
stant as the frequency approaches zero. Such a result is
expected because the current distribution becomes uni-
form as the radii become smaller than the skin depth.

A scaling relation in (11) is observed if the current
density J, is normalized by the uniform one: J, = I, / maj3.
By keeping ka, constant, the normalized current J, /J,
will remain unchanged when the wire geometry is en-
larged and the frequency is reduced propetly.

IV. NuMmericaL RESULTS

A computer program based on (10) and (11) is estab-
lished to calculate the propagation constant and the cur-
rent distribution of the two-wire transmission line system
(Fig. 2). The infinite series in these equations converge
rapidly because the term (e, —y/e; —1) is less than unity.
This term is approximately proportional to (2e,)~"; thus
the larger the ratio e, = D, / a, the more rapid the conver-
gence. On a VAX 8700, the computer program takes only
0.25 s in calculating 20 data points of the attenuation
constant. In Wu’s approach [12], where the surface inte-
gral equation method is used and the circular contour is
approximated by a regular polygon of 16 edges, computa-
tion of the same data points would take more than 4 min
on a VAX 8700.

In the following discussion, we present only the ampli-
tude of the dimensionless current distribution |J,|, which
is normalized by the uniform current density J, = I, / wa?.
The assumed conductivity o is 5.7x107 S/m.

To examine the validity of the theory and the accuracy
of the program, the current distributions of the present
approach are compared with those of [12] and [14] in Fig.
3. Carson’s results are reproduced from formulas (15) and
(42) of [14], after using the approximations (40) and (41)
of [14], to get the closed-form coefficients of the series
solution for the current distribution. Good agreement
between the results for D /a =5 and 500 is observed and
those of [12] and [14] are not shown. For the case D /a =
2.5, where the two wires are very close, the results of [14]
are quite different from those of [12] and ours, while the
latter two show only slight difference. For small D /a the
approximations in (40) and (41) of [14] are inadequate. To
obtain better results, the complicated infinite-dimensional
matrix equation [14, eq. (34)] has to be solved for the
coefficients of the current series. Then the advantage of
the analytic approach in [14] will disappear and the proce-
dure will become more like the numerical method used in
[12].
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Fig. 3. Normalized current distributions |J,| with D /a as parameters:
a;=a,=a=4cm, o =57X10" S/m, and f =200 Hz. The results of
[12] and [14] are also shown for comparison. All current densities are
normalized by the uniform one: J, = I, /wa?.
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Fig. 4. Current distributions to show skin effect at h1gher frequencies:
a;=day=a=1mm, D/a=500,and o =5.7%107 S/m.

The current distributions in Figs. 3 and 4 are plotted on
logarithmic scales to show the exponentially decaying
phenomenon at high frequency. The slopes of the curves
at the conductor surfaces reflect the frequency depen-
dence of the skin depth. Because frequency is kept con-
stant in Fig. 3, the slopes of the curves are the same. But
as the distance D between wire centers gets smaller, the
normalized current density at the near end x =a, be-
comes much larger than that at the far end x = — a,. This
is due to the proximity effect.

Shown in Fig. 4 are the current distributions when the
distance between-the two wires is large so that the skin
effect is much larger than the proximity effect. By the
scaling argument, our normalized currents at f=0.08,
0.16, and 0.32 MHz should be the same as those of [12] at
f =50, 100, and 200 Hz. In fact, the results of [12] and our
results are well matched; therefore only ours are plotted.
In addition, the slopes of these curves are proportional to
the square root of the frequency, which in turn is propor-
tional to the inverse of the skin depth.

The variation of the current density on the left-conduc-

tor surface is plotted in Fig. 5. It should be noticed that
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Fig. 5. Currents on left-conductor surface to reflect proximity effect:
a=1mm, o =57x10"S/m, and f =10 kHz.
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F1g 6. Currents to show prox1m1ty effect by adjusting D /a: a;=a, =
a=1mm, o =57%107 S/m, and f=10 kHz.

the order of magnitude does not vary much, and that the
current density at the conductor surface is governed by
the proximity effect alone. The proximity effect is negligi-
ble, as reflected by the constant surface current, when the
distance D is sufficiently large. The proximity effect makes
|7,| larger at the near end (8 = 0) as D is decreased.

To highlight the proximity effect, a lower frequency
case is chosen so that the skin effect is less significant. In
Figs. 6 and 7, the exponentially decaying phenomenon
due to skin effect disappears and the variation in current
comes from the proximity effect. With large D /a the

‘current distribution is almost uniform, while with small

D /a it increases monctonically from the far end to the
near end, as shown in Fig. 6. The influence of the right-
wire size on the left-wire current is shown in Fig. 7. When
the ratio a, /a, is small, |J,| shows little dependence on
the wire radius a,. But as a,/a, becomes large, the
prox1m1ty effect can greatly affect the current dlstrlbutlon
|J,| in the left wire.

Redistribution of current density due to skin and prox-
imity effects causes the propagation constant to change
accordingly. Fig. 8 shows the dependence of the attenua-
tion constant « on frequency. It can be seen that « is
proportional to the square root of frequency in the high-
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Fig. 7. Currents to show proximity effect by varying a,/a;: a;=
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Fig. 8. Attenuation constant a (Np/m) versus frequency f (Hz) with
D /a as parameters: a; =a; =a=1mm and ¢ =5.7% 107 S /m.

frequency range and tends to a constant in the low-
frequency range. The attenuation constant increases as
the wire distance D is decreased due to the proximity
effect, as illustrated in Fig. 9. The variation of a de-
creases as D becomes large because the two wires now
act almost independently when they are far apart. The
effect of wire radius a on the attenuation constant « and

the normalized wavenumber B8 /8B, is shown in Fig. 10. -

For thin wires, the current distribution is essentially uni-
form so that « is inversely proportional to the square of
a. For large a such that the two wires almost touch, both
a and B /B, tend to infinity. The assumption that B
should be approximately equal to B, is no longer satis-
fied; thus the validity of the theory is questionable when
the two wires are too close together. The effect of varying
a, /a, on the attenuation constant is shown in Fig. 11.
When a, /a; is small and frequency is low, increasing
a, /a; will lower a because the larger right wire has
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Fig. 10: Attenuation constant « and normalized wavenumber g /8,
versus wire radius a (=a;=a,) with frequency f as parame-
ter. D =10 mm and ¢ = 5.7% 107 S/m.

reduced the power loss. But when a, /a, is large and the
proximity effect is dominant, « will increase as a, /a is
further increased.

V. CONCLUSIONS

The current distribution and the propagation constant
of a two-wire transmission line system have been studied
using the perturbed-TEM approach. The wave behavior
due to the skin effect and the proximity effect has been
clearly displayed. Being simple in structure, many calcula-
tions can be done analytically and the actual CPU time
can be considerably reduced. In a more general structure
such analytical convenience may disappear. However, the
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same perturbed-TEM analysis is still applicable. A possi-
ble extension of this method to deal with the multicon-
ductor system with imperfect conductors in an inhomoge-
neous medium, such as the microstrip line, is under
consideration. By treating the transverse magnetic field
component of the corresponding lossless system as the
boundary condition, the same teéhnique then leads to the
desired propagation constant. k
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