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Abstract —A novel perturbed-TEM approach is proposed to study the

detailed curreut distribution and the propagation coustaut of a multi-

conductor transmission line system with imperfect conductors. Iu this

study, the pertnrbed fields are derived under the assumption that the

fields outside the conductors are TEM waves of the corresponding

lossless system aud those inside the conductors satisfy the TM modal

equations. These fields are then substituted into a perturbational for-

mula to obtain the propagation constant of the 10SSYsystem. Presented

as an example are the current distribution and the propagation constant

of a 10SSY two-wire transmission line, which clearly illustrates the loss

mechanism due to the skin effect and the proximity effect.

I. INTRODUCTION

T HE MODELING of conductor loss in a multicon-

ductor transmission line system is again receiving

attention due to the advent of high-speed integrated

circuits. As the speed goes higher and the circuit size gets

smaller, the circuit dimension becomes comparable to the

skin depth. Under such a condition, the skin effect and

the proximity effect may force the currents to gather

toward the surfaces and near sides of the conductors.

This modification of the current distribution makes the

power loss, and therefore the attenuation constant, fre-

quency dependent.

Although studies of conductor loss started very early,

most of them have treated only cases with circuit dimen-

sions much greater than the skin depth [1]–[5]. The power

loss was then obtained by the surface resistance method

[1]-[4] once the current distribution of the related lossless

system could be calculated in advance, or by the incre-

mental induction rule [5] if the inductance of the lossless

system could be found analytically. The common assump-

tion in these methods is the exponentially decaying behav-

ior of the current distributions.
It is not until recently that detailed current distribu-

tions have been given serious attention. Waldow and

Wolff [6] used a variational formulation for studying the

skin effect problem. For the same skin effect problem,

Konrad [7], [8] and Costache [9] developed an integrodif-

ferential finite element approach. To carry out the nu-
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merical computation, both methods [6]–[9] have to as-

sume an artificial boundary box to confine the problem in

a finite region. Alternatively, Weeks et al. [10] have pro-

posed a volume integral equation method based on net-

work theory. In the high-frequency range, all the above

methods are faced with a large matrix problem, which

may require a great deal of time in numerical calculation.

Djordjevic et al. [11] applied the surface integral equation

approach, which was numerically efficient for most of the

frequencies. However, an additional unnecessary radia-

tion resistance would appear at higher frequency due to

the axial-independent TM wave assumption. Recently,

Wu and Yang [12] successfully proposed a similar surface

integral equation approach to tackle the skin effect prob-

lem where an axial and sinusoidal quasi-TEM modal field

was assumed.

In this paper, a perturbational formulation of the prop-

agation constant [13] is proposed to study the skin effect

and proximity effect of a multiconductor transmission line

system. By assuming that the fields outside the conductors

are TEM waves of the corresponding Iossless system and

that those inside satisfy the modified equations of TM

modal fields, suitable perturbed TEM fields may be de-

rived for calculating the propagation constant from the

perturbational formula. The numerical results of a lossy

two-wire transmission line are presented as a demonstra-

tion of this approach, and they illustrate clearly the skin

effect and the proximity effect.

II. PERTURBATIONAL FORMULATION OF THE

PROPAGATION CONSTANT

Consider a Iossy transmission line system (the per-

turbed system) of N imperfect electric conductors,

Qi(wi, c,, mi; i = 1,2, ” “ “, N), in a Iossless region fl(wo, ●o)
as shown in Fig. 1. Each conductor has conductivity u,,

permeability ~,, and permittivity e,, respectively. By per-

turbational technique, one needs the related lossless sys-

tem (the unperturbed system) in which the conductors in

Fig. 1 are replaced by perfect electric conductors of the

same shapes. Conventionally, the attenuation constant a

of the Iossy system is calculated by the power-loss for-

mula [1]
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Fig. 1. Geometry of lossy multiconductor transmission line system.

where P~ is the power loss per unit length and P is the

power flow along the line. In this study, the perturba-

tional formula [13]

:$c@xE)”%dl
icl

~–yo=

//(

(2)

EXHO– EOXH)”.2dxdy
Q

will be adopted to characterize the propagation constant

y of the lossy system. Here (E, H) are the fields of the

lossy system (Fig. 1) propagating in the negative z direc-
tion with y = a + j~. (110, HO) are the fields of the related

Iossless system propagating in the positive z direction

with the propagation constant yO = jpO. Also, tii repre-

sents the unit normal vector pointing outward from the

surface contour Ci of each conductor, and 0 is the region

outside the conductors. Note that formula (2) includes the

change of the wavenumber /3 – PO while formula (1) does

not.

It should be mentioned that both formulas (1) and (2)

are exact if exact fields for (E, H) are substituted into

these formulas, Using the perturbational formulation, a

suitable approximation is used for the (E, H) fields in-

stead of the exact ones. For instance, the unperturbed

fields (EO, HO) may be utilized to compute the powers PL
and P in formula (l). Alternative approximate fields are

obtained based on the assumptions that the fields of the

lossy system outside the conductors would be almost the

same as those of the Iossless system, and that the electric

currents inside the conductors would exhibit an exponen-

tially decaying behavior. Under such assumptions, both

(1) and (2) would predict the same result:

~ ‘si!&ilHC)12 ‘z
~=1

a= Re[y–yO]= (3)

2// Re [EO x Hi] “fdrdy
n

where R,i = (mfpi \ ~i)lj’ is the surface resistance and ~

is the operating frequency.

Very often the exponentially decaying assumption is

not satisfied, especially when the skin depth is no longer
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much smaller than the dimensions of the conductors,

Then one may use the approximate fields derived from

the quasi-TEM modal analysis [12]. The main assump-

tions of this analysis are that the fields outside the con-

ductors are TEM waves in nature and the fields inside the

conductors are TM fields with E = .2Ez. Under such as-

sumptions, the apprc~ximate fields (with the factor

exp [ j(~t + DOz)] omitted) may be expressed as

(H = V,(D X i,lpi
for (x, y) in Qi

E = .Nt2(p/piwi
(4a)

(
H= Vt(p X f//Jo

E = V,p/@clEo
for (x,y) in 0 (4b)

where the potential function q satisfies

(v; ‘.j~~i~i)q(x,,y) = - ~i~ for (xjy) in ‘i (5a)

V:q(x,,y)=o for (x, y) in Q. (5b)

Here V,= i?d/L?x + jlr?l’~y, V:= 132/dx2 + 82/dy2, and ~

(a constant inside each conductor) is the voltage drop per

unit length. Equation (5) together with the conditions that

q and the tangential magnetic field are continuous across

the conductor boundaries can be used to solve the per-

turbed EM fields.

The approximate fields (4) and (5) were used in [12] to

obtain the equivalent circuit parameters of the line such

as resistance R and inductance L. In this study, their

modifications, (6), will be substituted into formula (2) to

obtain the propagation constant of the same line. Note

that outside the conductors H is approximately equal to

– H; and (E, H) depend only on the derivatives of q. So

one may add any constant to p without changing the field

distribution. By this argument, one has the modified’

equations

(q’ -j@w,~,)q(-x,Y) = O for (x,y) in ~, (6a)

fli “ (PL~lVfq _ HO* ><2) = O for (x, y) on Ci (6b)

for the perturbed EM fields (E, H) employed in (2).

111, TWO-WIRE TRANSMISSION LINE WITH

IMPERFECT CONDUCTORS

To demonstrate the application of the perturbational

formula (2), let us consider the lossy two-wire transmis-

sion line system (Fig, 2) which consists of two round wires

(I-LO,~0, m) of radii al and az with a distance D between

the wire centers. Its unperturbed fields may be expressed

as

HO =LL; lVfqPo X .f (7a)

EO = –Vtqo/& (7b)

where the scalar potential qO for the lossless system is

I 1(x- Dl-b)2+y2 1’2
PO =WOZO In

(x- Dl+b)2+y2 “
(8)

Here DI = (D2 + a; – a~)/2D, b = (D; – a?)l/2, and 10

is the total current along the wire.
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Fig. 2. Geometry of lossy two-wire transmission line system.

The next step is to find the perturbed fields (E, H), (4),

inside the conductors. By using (6) and adopting polar

coordinates (p, (3), the potential inside the left conductor

can be written as

‘x
(9a)

in=O

Here k 2 = – jo~oo, J~(kp) is Bessel’s function of order

m with complex argument kp; el = DI /al; and em = 2

(m= O) or 1 (m> 1). A similar expression for the poten-

tial inside the right conductor can also be derived. By

using the perturbed and unperturbed fields, (9) and (8),

the propagation constant in (2) then reduces to

jm

y –‘0 = ck(cosh-lel +cosh-lez)

Jrn(kaz)
x?:

,=1 m=o ~z%J?42(k%)
(ez-~e?-l)’m (10)

where e, = D, /al, Dz = D – Dl, and c is the speed of

light in free space. The current density J=( = UEZ = jouq)

in the left conductor can be written as

(11)

The expressions for large or small IkaZI are worth spe-

cial consideration. When Ika, I are much greater than

unity, which is equivalent to the case where al are greater

than the skin depth, J~(kai) are approximately equal to

jJ~(ka,) so the infinite series of (10) can be analytically

calculated:

This same result for al= az has been presented in [1].

Equation (12) also shows that the attenuation constant a

is proportional to the square root of the frequency. This is

the well-known result at higher frequency. In the lower

frequency range where lka, I are much less than unity so

that Jo(kal) = 1, Jl(kaZ) = ka, /2, and J~(kai) = O for m >

2, equation (10) can be simplified to

al–2 + a;’
-y--yo=

(
+0(0). (13)

c~oa cosh–lel +cosh–1e2)

Thus the attenuation constant approaches a certain con-

stant as the frequency approaches zero. Such a result is

expected because the current distribution becomes uni-

form as the radii become smaller than the skin depth.

A scaling relation in (11) is observed if the current

density JZ is normalized by the uniform one: JO= 10\ ~a~.

By keeping kal constant, the normalized current J= /JO

will remain unchanged when the wire geometry is en-

larged and the frequency is reduced properly.

IV. NUMERICAL RESULTS

A computer program based on (10) and (11) is estab-

lished to calculate the propagation constant and the cur-

rent distribution of the two-wire transmission Iline system

(Fig. 2). The infinite series in these equations converge

rapidly because the term (e, – ~~) is less than unity.

This term is approximately proportional to (2e,)- 1; thus

the larger the ratio e, = D,/ a, the more rapid the conver-

gence. On a VAX 8700, the computer program takes only

0.25 s in calculating 20 data points of the attenuation

constant. In Wu’s approach [12], where the surface inte-

gral equation method is used and the circular contour is

approximated by a regular polygon of 16 edges, computa-

tion of the same data points would take more than 4 min

on a VAX 8700.

In the following discussion, we present only the ampli-

tude of the dimensionless current distribution IJZI, which

is normalized by the uniform current density Jo = 10/T a;.

The assumed conductivity u is 5,7x 107 S/m.

To examine the validity of the theory and the accuracy

of the program, the current distributions of the present

approach are compared with those of [12] and [14] in Fig.

3. Carson’s results are reproduced from formulas (15) and

(42) of [14], after using the approximations (40) and (41)
of [14], to get the closed-form coefficients of the series

solution for the current distribution. Good agreement
between the results for D/a = 5 and 500 is observed and

those of [12] and [14] are not shown. For the case D/a =

2.5, where the two wires are very close, the results of [14]

are quite different from those of [12] and ours, while the

latter two show only slight difference. For small D\ a the

approximations in (40) and (41) of [14] are inadequate. To

obtain better results, the complicated infinite-dimensional

matrix equation [14, eq. (34)] has to be solved for the

coefficients of the current series. Then the advantage of

the analytic approach in [14] will disappear and the proce-

dure will become more like the numerical method used in

[12].
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Fig. 3. Normalized current distributions ].lzl with D/a as parameters:

al = az = a = 4 cm, u = 5.7x 107 S/m, and ~= 200 Hz. The results of
[12] and [14] are also shown for comparison. All current densities are
normalized by the uniform one: Jo = 10\ ma;.
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Fig. 4. Current distributions to show skin effect at higher frequencies:

al=az=a=l mm, D/a= 500, and u=5.7X107 S/m.

The current distributions in Figs. 3 and 4 are plotted on

logarithmic scales to show the exponentially decaying

phenomenon at high frequency. The slopes of the curves

at the conductor surfaces reflect the frequency depen-

dence of the skin depth. Because frequency is kept con-

stant in Fig. 3, the slopes of the curves are the same. But

as the distance D between wire centers gets smaller, the

normalized current density at the near end x = al be-

comes much larger than that at the far end x = – a ~. This

is due to the proximity effect.

Shown in Fig. 4 are the current distributions when the

distance between the two wires is large so that the skin

effect is much larger than the proximity effect. By the

scaling argument, our normalized currents at ~ = 0.08,

0.16, and 0.32 MHz should be the same as those of [12] at

~= 50, 100, and 200 Hz. In fact, the results of [12] and our
results are well matched; therefore only ours are plotted.

In addition, the slopes of these curves are proportional to

the square root of the frequency, which in turn is propor-

tional to the inverse of the skin depth.

The variation of the current density on the left-conduc-

tor surface is plotted in Fig. 5. It should be noticed that
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Fig. 5. Currents on left-conductor surface to reflect prozimity effect:

al=a2=a =lmm, o=5.7X107 S/m, and f=l13kHz.
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Fig. 6. Currents to show proximity effect by adjusting D/a: al= az =
a = 1 mm, u = 5.7X 107 S/m, and ~= 10 kHZ.

the order of magnitude does not vary much, and that the

current density at the conductor surface is governed by

the proximity effect alone. The proximity effect is negligi-

ble, as reflected by the constant surface current, when the

distance D is sufficiently large. The proximity effect makes

I.JZIlarger at the near end (0 = O) as D is decreased.

To highlight the prcximity effect, a lower frequency

case is chosen so that the skin effect is less significant. In

Figs. 6 and 7, the exponentially decaying phenomenon

due to skin effect disappears and the variation in current

comes from the proximity effect. With large D/a the

current distribution is almost uniform, while with small

D\ a it increases moncltonically from the far end to the

near end, as shown in IFig. 6. The influence of the right-

wire size on the left-wire current is shown in Fig. 7. When

the ratio az / al is small, IJ=I shows little dependence on
the Wire radius az. But as az / al becomes large, the

proximity effect can greatly affect the current distribution
{Jzl in the left wire.

Redistribution of current density due to skin and prox-

imity effects causes the propagation constant to change

accordingly. Fig. 8 shows the dependence of the attenua-

tion constant a on frequency. It can be seen that a is

proportional to the square root of frequency in the high-
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Fig. 7. Currents to show proximity effect by varying a2 /al: al=
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Fig, 8. Attenuation constant a (Np/m) versus frequency f (Hz) with

D/a as parameters: al= a2 = a = 1 mm and u = 5.7x 107 S/m.

frequency range and tends to a constant in the low-

frequency range. The attenuation constant increases as

the wire distance D is decreased due to the proximity

effect, as illustrated in Fig. 9. The variation of a de-

creases as D becomes large because the two wires now

act almost independently when they are far apart. The
effect of wire radius a on the attenuation constant a and

the normalized wavenumber ~ /~0 is shown in Fig. 10.

For thin wires, the current distribution is essentially uni-

form so that a is inversely proportional to the square of

a. For large a such that the two wires almost touch, both

a and B /~0 tend to infinity. The assumption that ~

should be approximately equal to /30 is no longer satis-

fied; thus the validity of the theory is questionable when

the two wires are too close together. The effect of varying

az / a ~ on the attenuation constant is shown in Fig. 11.

When az ~ al is small and frequency is low, increasing

az / al will lower a because the larger right wire has

Fig. 9.
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Attenuation constant a versus D/a with frequency
rameters: al = a2 = a = 1 mm and u = 5.7x 10’ S/m.
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Fig. 10. Attenuation constant a and normalized wavenumber p /BO
versus wire radius a ( = al = a ~) with frequency ~ as parame-

ter. D = 10 mm and a = 5.7x 107 S/m.

reduced the power loss. But when az / al is large and the
proximity effect is dominant, a will increase as az / al is

further increased.

V. CONCLUSIONS

The current distribution and the propagation constant

of a two-wire transmission line system have been studied

using the perturbed-TEM approach. The wave behavior

due to the skin effect and the proximity effect has been

clearly displayed. Being simple in structure, many calcula-

tions can be done analytically and the actual CPU time

can be considerably reduced. In a more general structure

such analytical convenience may disappear. However, the



TSA1 AND CHEN PERITJRBED-TEM ANALYSIS OF TRANSM1SS1ON LINES

I I I
7

/4

a

L
lo-;~3’ ‘ “’’’” I , ( ,,, ,1 ( J

104 105 106 107

f (Hz)
Fig. 11. Attenuation constant a versus ~ with a2\al as parameters:

al=l mm, D/al =10 and m=5.7X107S/UL

same perturbed-TEM analysis is still applicable. A possi-

ble extension of this method to deal with the multicon-

ductor system with imperfect conductors in an inhomoge-

neous medium, such as the microstrip line, is under

consideration. By treating the transverse magnetic field

component of the corresponding Iossless system as the

boundaty condition, the same technique then leads to the

desired propagation constant.
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